If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+32x+31=0
a = 8; b = 32; c = +31;
Δ = b2-4ac
Δ = 322-4·8·31
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{2}}{2*8}=\frac{-32-4\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{2}}{2*8}=\frac{-32+4\sqrt{2}}{16} $
| 7g–g+2g=0 | | 2(f-7)-10=8 | | 4(x-3)/2(-x/3)=8 | | -21+6a=2(3a-7) | | 5f+16=6-5f | | 1800=1200=45p | | 27-2x=-7-1(-3x-4) | | 2+j=12 | | 9(8-5)+13=12d-2 | | 6-f=9 | | 2(5-b)+6b=b+22 | | -5(r+6=-53) | | F(x)=1575-225x | | -3(1+5x)+4=-29 | | -3=-3(g+3)+-3 | | 4(z+5(=32 | | -28=h+10/5 | | b+-16=-22 | | 44x+880=3x | | 4(7-4r)=-8r-28 | | 7x+5=9-3 | | 25.75x+22.00=x | | 2x+4+8x+6=0 | | 4(4x-1)=(5x+1+3x+2) | | 2(z-7)=2 | | -3x-15=-5x+7 | | 4(4x-1)=(5x+1+3x+2 | | 44x=3x | | .50x+4=5x+5 | | 2=6/f | | 106+42+x=180 | | H+9=8h-16 |